

Liang-Gee Chen

Distinguished Professor General Director, SOC Center National Taiwan University

DSP/IC Design Lab, GIEE, NTU

National Taiwan University

Multicore SoC is coming

Source: 2007 ISSCC and IDF

Multithread Multiprocessor SM Core

Typical Architecture of MPSOC

The Perspective for MPSoC

Driving Forces for MPSOC

- Technology Push: Semiconductor technology
 - Moore's law is still working

Driving Forces for MPSOC

- Demand Pull
 - RMS (Recognition, Mining and Synthesis) for Server
 - MMM (Mobile MultiMedia) for end products

Mobile multimedia platform

· Mobile device becomes the personal multimedia platform

Multimedia Signal Processing

- Signals: Image, Speech, Audio, Graphic
- Representations: Bitstream, Frame, Pixel
- Applications: 2D/3D Modeling, Animation, Content Based Indexing and Retrieval, Storage and Transmission
- Key Technology: Video Coding and Graphics

Ref: Prof. Pirsch Keynote on ICME 2007

9

National Taiwan University

Evaluation of Video Coding Standards

Services with Scalable Functions

From compression efficiency to specific functionalities

Evolution of Coding Tools

• New adaptive prediction modes, function-oriented tools

				H.264	H.264 High	
Tool	MPEG-2	MPEG-4 ASP	VC-1	Baseline	profile	H.264 SVC
Frame Type	I, P, B	I, P, B	I, P, B	I, P	I, P, B	I, P, B, EI, EP, EB
Macro-block				16x164x4	16x164x4	16x164x4 (7
partition in MC	16x16	16x16,8x8	16x16,8x8	(7 modes)	(7 modes)	modes)
Motion-vector						
precision	1/2	1/4	1/4	1/4	1/4	1/4
Intra-prediction						
modes		2	2	13	22	22
Transform	DCT	DCT	DCT*	4x4 Integer*	Integer*	4x4/8x8 Integer*
Loop filtor			V	V	V	V
			V	v	CAVLC.	v
Entropy coding	VLC	VLC	CAVLC	CAVLC	CABAC	CAVLC, CABAC
						Hierarchical B-
				multiple	8x8	frame, inter-layer
		global motion		reference	transform/pre	prediction,
Special features		compensation		frames	diction	CGS/MGS/FGS

Architectural Perspective for Multimedia Processing

13

National Taiwan University

- Parallel Processing
 - Requirement: Processing of independent segments
 - Pipelining, systolic processing
 - Task level parallelism
 - Instruction level parallelism
 - Data level parallelism
- Stream Processor
 - Requirement: Processing of dependent segments
 - Scalable architecture
 - Multi-thread and cache
 - 13

Design Space in Various Levels

H.264 Encoding as Example

Data Dependency Analysis

- P-frame scheme
 - Referenced frames are all different

- B-frame scheme
 - The B-frames may have the same referenced Pframes
 - The next P-frame also has the same reference frame

Frame-Parallel Encoding Scheme

- Encode frames of same reference frames in parallel
 - The MBs of same location are encoded simultaneously
 - Achieve frame-level data reuse
 - For IBBP scheme, 66% system memory bandwidth is saved

ME Algorithm

Predicted moving window (PMW) search

- Adaptive $16 \times 16 / 16 \times 8$ window size

Level C and Level D Schemes

2D Bandwidth Sharing ME Architecture

Horizontal Data Sharing

Main Concepts of the FME Stage

- Thorough parallelization of each block with full pipeline and high utilization
 - Sequential process of VBS
 - The least common factor of VBS is 4x4.
 - The SATD involves 4x4 Hadamard transform.

4x4-Block Processing Unit (PU)

Parallel Configuration of PUs

16x16 Intra Prediction (I16MB)

Reconfigurable Computing

One Four processing elements Neighboring Rec. ΡΕ Pels, Parameters, **PE** Connections - Generate four predictors in one cycle Normal configuration - I4MB modes except hori. and vert. **Bypass configuration** I4MB/I16MB hori, and vert, modes Cascading configuration Reg I4MB and I16MB DC modes Rounding / **Recursive configuration** Scaling - I16MB plane prediction mode Clip

Interleaved I4MB/I16MB Schedule

National Taiwan University

29

Predictor 2

System Architecture for Video Encoding

Chip Micrograph

Chip Features

Technology	0.18 μm CMOS 1P6M				
Supply Voltage	1.8V				
Core Area	7.68×4.13mm²				
Logic Gates	922.8K (2-input NAND gate)				
SRAM	34.72KB				
Encoding Tools	Baseline Profile Compression				
Operating Frequency	81MHz for D1 108MHz for HDTV720p				
Power Consumption	581mW for D1 785mW for HDTV720p				
	National Taiwan University				

- Introduction
- Low power stream video processor
 Data parallel optimazation
- Multi-core stream processor SoC for Graphic and computer vision
 - Streaming data model
- Conclusion

GPUs evolution

- Evolution of the PC hardware graphics pipeline:
 - 1995-1998: Texture mapping and z-buffer
 - 1998: Multitexturing
 - 1999-2000: Transform and lighting
 - 2001: Programmable vertex shader
 - 2002-2003: Programmable pixel shader
 - 2004-2006: Shader model 3.0 and 64-bit color support
 - 2007: Stream computing

Traditional GPU pipeline

Performance evolution

Contemporary GPUs evolution

Stream Programming Model

- Stream program organizes data as streams and computation as kernel
 - Stream element (record)
 - 8-bit pixel
 - User defined data structure (MB, RGB_pixel...)
 - • Record Record Record
 - Kernel
 - Define computation from input streams to output streams
 - Only access local memory space!!

Stream Processing Model

39

Pipeline Task Sharing by Reconfigurable Stream Core

Unified Stream Core

Work Load Analysis

Task level scalable for multi-core system

Reconfiguration for instruction path

Reconfiguration for instruction path

Measurement result

Average 1.6 times speed up

Accepted as "Configurable Memory Array for Multimedia Multithreading Stream, Processing Architecture, " in Proc. IEEE International Symposium on Circuits and Systems (ISCAS'08), May 2008

Stream architecture for Mobile Multimedia

- Duo heterogeneous cores
- Due homogenous stream processor cores
- Multi-Clock domain power optimization

Die photo and specification

Process Tech	nology	UMC 90nm CMOS 1P9M LowK		
Supply Voltag	е	1.0V core, 2.5V I/O		
Clock Freque	ncy	50-200MHz, 5 CLK Domains		
Power Consu	mption	26mW (Stream Processing Unit 16 mW)		
	RISC CPU	I\$: 8KB D\$: 8KB		
SKAW	SPU	IM: 2KB		
	CMA	10KB		
Performance	Arithmatia	16 GOPS		
	Antimetic	6.4 GFLOPS		
	Graphics Throughput	200M vertics/s, 400M pixels/s		

Accepted as "A 26mW 6.4GFLOPS Multi-Core Stream Processor for Mobile Multimedia Applicati of Symposium on VLSI Circuits, 2008.

Stream Architecture for Computer

Vision

- 2D Stream processor
 - Computer vision function architecture
 - Tile base stream processing
- Parallel mask conditional operation
 - Avoid a lot of branch instructions

Stream Architecture for Computer

Stream Architecture for Computer Vision

Scalable Visual Processor

iVisual (Intelligent Visual Processor)

- Highest level abstraction
 - Image-in, answerout
- Scalable architecture for higher specification
 - Can be easily combined
 - Change integrated
 PE array number

Video Stream Processor

Architectural Perspective for Multimedia Processing

58

National Taiwan University

- Parallel Processing
 - Requirement: Processing of independent segments
 - Pipelining, systolic processing
 - Task level parallelism
 - Instruction level parallelism
 - Data level parallelism
- Stream Processor
 - Requirement: Processing of dependent segments
 - Scalable architecture
 - Multi-thread and cache

Architectural Perspectives of MPSOC

- Semiconductor Technology and Mobile MultiMedia applications are continuously the push-pull driving forces for MPSoC.
- End Products with Battery power for MMM requires novel multi-core architectures.
- Stream Processor could play important role to provide reconfigurability and scalability.

Thank you!

60